
Chapter 1

IMPROVING RESOURCE SELECTION AND
SCHEDULING USING PREDICTIONS

Warren Smith
Computer Sciences Corporation
NASA Ames Research Center
wwsrnith@nas.nasa .gov

Abstract
The introduction of computational grids has resulted in several new

problems in the area of scheduling that can be addressed using predic-
tions. The first problem is selecting where to run an application on the
many resources available in a grid. Our approach to help address this
problem is to provide predictions of when an application would start
to execute if submitted to specific scheduled computer systems. The
second problem is gaining simultaneous access to multiple computer
systems so that distributed applications can be executed. We help ad-
dress this problem by investigating how to support advance reservations
in local scheduling systems. Our approaches to both of these problems
are based on predictions for the execution time of applications on space-
shared parallel computers. As a side effect of this work, we also discuss
how predictions of application run times can be used to improve schedul-
ing performance.

Keywords: Run time prediction, wait time prediction, performance prediction, sched-
uling, grid computing.

1. Introduction
The existence of computational grids allows users to execute their

applications on a variety of different computer systems. An obvious
problem that arises is how to select a computer system to run an ap-
plication. Many factors go into making this decision: The computer
systems that the user has access to, the user's remaining allocations on

I

2

these systems, the cost of using different systems, the location of data
sets for the experiment, how long the application will execute on dif-
ferent computers, when the application will start executing, and so on.
We wish to help users make this decision, so in Section 1.3, we discuss
approaches to predicting when a scheduling system for a space shared
parallel computer will start executing an application.

The large number of resources available in computational grids leads
users to want to execute applications that are distributed across multiple
resources; such as running a large simulation on 2 or more supercomput-
ers. The difficulty with this is that different resources may have different
scheduling systems without any mechanisms to guarantee that an appli-
cation obtains simultaneous access to the different resources. To address
this problem, Section 1.5 describes ways to incorporate advance reser-
vations into scheduling systems and analyze their performance. Users
can use advance reservations to ask for resources from multiple sched-
ulers at the same time in the future and obtain simultaneous access.
As a side effect of this work, in Section 1.4 we discuss how to improve
the performance of scheduling systems even when no reservations are
needed.

W-e base much of the work above on techniques to predict the ex-
ecution time of applications on space shared parallel computers. We
begin this chapter by describing two techniques to calculate predictions
of application run times and discuss their performance.

2. Run Time Predictions
There have been many efforts to predict the execution time of serial

and parallel applications. We can roughly classify prediction techniques
by whether the resources that are used are shared or dedicated, the type
and detail of application and resource models that are used, and the
type of prediction technique used.

There have been many efforts to predict the execution time of appli-
cations on shared computer systems [4, 5, 25, 191 and dedicated com-
puter systems [21, 22, 6, 12, 14, 151. Almost all of the techniques refer-
enced above use very simple models of an application. Typically either
the information provided to the scheduler or this information plus a
few application-specific parameters [15]. An exception is the work by
Schopf [19, 181 where high-level structural models of applications were
created with the assistance of the creators of the applications.

The type of prediction technique that is used can generally be sepa-
rated into statistical, which uses statistical analysis of applications that
have completed, and analytical, which constructs equations describing

Improving Resource Selection and Scheduling Using Predictions 3

application execution time. Statistical approaches use time series anal-
ysis [25, 51, categorization [21, 6, 121, and instance-based learning or
locally weighted learning [15, 14, 221. Analytical approaches develop
models by hand [19] or use automatic code analysis or instrumenta-
tion [23].

We present and analyze the performance of two techniques that we
have developed. Both techniques are statistical and only use the in-
formation provided when an application is submitted to a scheduler to
make predictions. The first technique uses categories to form predictions
and the second technique uses instance-based learning.

2.1 Categorization Prediction Technique
Our first approach to predicting application run times is to derive run

time predictions from historical information of previous similar runs.
This approach is based on the observation [21, 6, 9, 121 that similar
applications are more likely to have similar run times than applications
that have nothing in common.

One difficulty in developing prediction techniques based on similarity
is that two applications can be compared in many ways. For example,
we can compare applications on the basis of application name, submit-
ting user name, executable arguments, submission time, and number of
nodes requested. When predicting application run times in this work,
we restrict ourselves to those values recorded in traces obtained from
various supercomputer centers. The workload traces that we consider
originate from 3 months of data from an IBM SP at Argonne National
Laboratory (ANL), 11 months of data from an IBM SP at the Cornell
Theory Center (CTC), and 2 years of data from an Intel Paragon at the
San Diego Supercomputer Center (SDSC). The characteristics of jobs in
each workload vary but consist of a relatively small set of characteristics
such as user name application name, queue name, run time, and so on.

Our general approach to defining similarity is to use job characteristics
to define templates that identify a set of categories to which applications
can be assigned. For example, the template (queue,user) specifies that
applications are to be partitioned by queue and user. On the SDSC
Paragon, this template generates categories such as (q16m, wsmith),
(q641, wsmith), and (q16m, foster).

We find that categorizing discrete characteristics (such as user name)
in the manner just described works reasonably well. On the other hand,
the number of nodes is an essentially continuous parameter, and so we
prefer to introduce an additional parameter into our templates, namely,
a node range size that defines what ranges of requested number of nodes

4

are used to decide whether applications are similar. For example, the
template (u, n=4) specifies a node range size of 4 and generates cate-
gories (wsmith, 1-4 nodes) and (wsmith, 5-8 nodes).

In addition to the characteristics of jobs contained in the workloads,
a maximum history, type of data to store, and prediction type are also
defined for each run time prediction template. The maximum history
indicates the maximum number of data points to store in each category
generated from a template. The type of data is either an actual run
time or a relative run time. A relative run time incorporates information
about user-supplied run time estimates by storing the ratio of the actual
run time to the user-supplied estimate (the amount of time the nodes
are requested for). The prediction type determines how a run time
prediction is made from the data in each category generated from a
template. We considered four prediction types in our previous work:
a mean, a linear regression, an inverse regression, and a logarithmic
regression [7]. We found that the mean is the single best predictor [20],
so this work uses only means to form predictions. We also take into
account running time, how long an application has been running when
a prediction is made, when making predictions by ignoring data points
from a category that have a run time less than this running time.

Once a set of templates has been defined (using a search process de-
scribed later), we simulate a workload of application predictions and
insertions. For each insertion, an application is added to the categories
that contain similar applications. For each prediction, an execution time
and a confidence interval is calculated. A prediction is formed from each
similar category of applications and the prediction with the smallest
confidence interval is selected to be the prediction for the application.

We use a genetic algorithm search to identify good templates for a
particular workload. While the number of characteristics included in
our searches is relatively small, the fact that effective template sets may
contain many templates means that an exhaustive search is impracti-
cal. Genetic algorithms are a probabilistic technique for exploring large
search spaces, in which the concept of cross-over from biology is used to
improve efficiency relative to purely random search [13]. A genetic al-
gorithm evolves individuals over a series of generations. Our individuals
represent template sets. Each template set consists of between 1 and 10
templates, and we encode the previously described information in each
template. The process for each generation consists of evaluating the fit-
ness of each individual in the population, selecting which individuals will
be mated to produce the next generation, mating the individuals, and
mutating the resulting individuals to produce the next generation. The
process then repeats until a stopping condition is met. The stopping

Improving Resource Selection and Scheduling Using Predictions 5

Workload

ANL
CTC

SDSC95

Mean Error (minutes) Mean Run
Ours Gibbons Downey Time (minutes)
34.52 75.26 97.01 97.08
98.28 124.06 179.46 182.49
43.20 74.05 82.44 108.16

I I I I I SDSC96 I 47.47 I 122.55 I 102.04 I 166.85

condition we use is that a fixed number of generations are processed.
Further details of our searches are available in [20]

The accuracy of the prediction parameters found by our searches are
shown in the second column of Table 1.1. The prediction error is 39 per-
cent on average and ranges from 28 percent for the SDSC96 workload to
54 percent for the CTC workload. We compare these results to the run
time prediction performance technique proposed by Gibbons [12] and
the run time prediction technique used by Downey [6] to predict how
long jobs will wait at the head of a scheduling queue before beginning
to execute. Both of these techniques categorize applications that have
completed executing, find categories that are similar to an application
whose run time is to be predicted, and then form a prediction from these
categories. The categories and techniques used to calculate predictions
differ between the two techniques and differ from our technique. Ta-
ble 1.1 shows that our predictions have between 21 and 61 percent lower
mean error than the Gibbons’ approach and 45 to 64 percent lower mean
error than the better of Downey’s two techniques.

2.2 Instance-Based Learning Approach
In our second approach) we predict the execution time of applications

using instance-based learning (IBL) techniques that are also called lo-
cally weighted learning techniques [I, 171. In this type of technique) a
database of experiences, called an experience base, is maintained and
used to make predictions. Each experience consists of input and output
features. Input features describe the conditions under which an expe-
rience was observed and the output features describe what happened
under those conditions. Each feature consists of a name and a value
where the value is of a simple type such as integer) floating-point num-
ber, or string. In this work, the input features are the same ones as used
in our first approach: The user who submitted the job, the application

i

6

that was executed, the number of CPUs requested, and so on. The
execution time of the job is the only output feature of the experience.

When a prediction is to be performed, a query point consisting of
input features is presented to the experience base. The data points in
the experience base are examined to determine how relevant they are
to the query where relevance is determined using the distance between
an experience and the query. There are a variety of distance functions
that can be used I241 and we choose to use the Heterogeneous Euclidean
Overlap Metric [24]. This distance function can be used on features that
are linear (numbers) or nominal (strings). We require support for nomi-
nal values because important features such as the names of executables,
users, and queues are nominal. As a further refinement, we perform fea-
ture scaling to stretch the experience space and increase the importance
that certain features are similar.

Once we know the distance between experiences and a query point,
the next question to be addressed is how we calculate estimates for the
output features of the query point. For linear output features, such as
execution time, our approach is to use a distance-weighted average of the
output features of the experiences to form an estimate. We choose to
use a Gaussian function to form this distance-weighted average. Further,
we include a factor, called the kernel width, so that we can compact or
stretch the Gaussian function to give lower or higher weights to experi-
ences that are farther away.

To perform an estimate, we must select values for the parameters
discussed above along with the maximum experience base size and the
number of nearest neighbors (experiences) to use. Our approach to de-
termine the best values for these parameters is to once again perform a
genetic algorithm search [13] to select values that minimize the predic-
tion error.

Table 1.2 shows a comparison of our categorization technique and our
instance-based learning technique using the same trace data that we used
to evaluate our first technique. The table shows that at the current time,
our instance-based learning technique has an error which is 44 percent of
mean run times and 59 percent lower than the user estimates available
in the ANL and CTC workloads. The user estimates for the ANL and
CTC workloads are provided along with each job. Our IBL technique
has an 89 percent lower error than the run time estimates that can be
derived from the SDSC workloads. This system has many queues with
different resource usage limits. We derive the run time limits for each
queue by examining the workloads and finding the longest running job
submitted to each queue.

Improving Resource Selection and Scheduling Using Predictions

IBL Mean
Error

7

Categorization Mean Error of Mean Run
Mean Error User Estimate Time

Tab1

Workload
ANL
CTC

SDSC95
SDSC96

(minutes) (minutes) (minutes) (minutes)
36.93 34.52 104.35 97.08
103.75 98.28 222.71 182.49
51.61 43.20 466.49 108.16
52.79 47.47 494.25 166.85

Table 1.2 also shows that the error of our categorization technique
is currently 10 percent lower than our IBL technique. There are sev-
eral possible reasons for this result. First, we performed more extensive
searches to find the best parameters used in the categorization technique.
Second, the categorization technique essentially uses multiple distance
functions and selects the best results obtained after using each of these
functions instead of the single distance function used by our IBL ap-
proach. In future work, we will evaluate how well our IBL approach
performs when using multiple distance functions.

3. Queue Wait Time Predictions
On many high-performance computers, a request to execute an-appli-

cation is not serviced immediately but is placed in a queue and serviced
only when the necessary resources are released by running applications.
On such systems, predictions of how long queued requests will wait be-
fore being serviced are useful for a variety of tasks. For example, pre-
dictions of queue wait times can guide a user in selecting an appropriate
queue or, in a computational grid, to an appropriate computer [ll].
Wait time predictions are also useful in a grid computing environment
when trying to submit multiple requests so that the requests all receive
resources simultaneously [2]. A third use of wait time predictions is to
plan other activities in conventional supercomputing environments.

We examine two different techniques for predicting how long appli-
cations wait until they receive resources in this environment. Our first
technique for predicting wait times in scheduling systems is to predict
the execution time for each application in the system (using the cat-
egorization technique presented in Section 1.2) and then to use those
predicted execution times to drive a simulation of the scheduling algo-
rithm. This allows us to determine the start time of every job in the
scheduling system. The advantage of this technique is that, for certain
scheduling algorithms and accurate run time predictions, it can poten-

,

8

tially provide very accurate wait time predictions. A disadvantage is that
if the scheduling algorithm is such that the start times of applications in
the queues depend on applications that have not yet been submitted to
the queues, the wait time predictions will not be very accurate. A second
disadvantage of this technique is that it requires detailed knowledge of
the scheduling algorithm used by the scheduling system.

Our second wait time prediction technique predicts the wait time of an
application by using the wait times of applications in the past that were
in a similar scheduler state. For example, if an application is in a queue
with four applications ahead of it and three behind it, how long did
applications in this same state wait in the past? This approach uses the
same mechanisms as our approach to predicting application execution
times with different characteristics used to describe the conditions we
are predicting.

3.1 Scheduling Algorithms
We use three basic scheduling algorithms in this work: first-come first-

served (FCFS), least work first (LWF), and conservative backfill [3, 101
with FCFS queue ordering. In the FCFS algorithm, applications are
given resources in the order in which they arrive. The application at the
head of the queue runs whenever enough nodes become free. The LWF
algorithm also tries to execute applications in order, but the applications
are ordered in increasing order using estimates of the amount of work
(number of nodes multiplied by estimated wall clock execution time) the
application will perform.

The conservative backfill algorithm is a variant of the FCFS algorithm.
The difference is that the backfill algorithm allows an application to
run before it would in FCFS order if it will not delay the execution
of applications ahead of it in the queue (those that arrived before it).
When the backfill algorithm tries to schedule applications, it examines
every application in the queue, in order of arrival time. If an application
can run (there are enough free nodes and running the application will
not delay the starting times of applications ahead of it in the queue),
it is started. If an application cannot run, nodes are reserved for it
at the earliest possible time. This reservation is only a placeholder to
make sure that applications behind it in the queue do not delay it; the
application may actually start before this time.

3.2
Our first wait time prediction technique simulates the actions per-

formed by a scheduling system using predictions of the execution times

Predicting Queue Wait Times: Technique 1

Improving Resource Selection and Scheduling Using Predictions 9

Wait Time Prediction Error
Scheduling Actual Run Maximum Run

Workload Algorithm Times (minutes) Times (minutes)

Table 1.9. Wait time prediction performance using actual and maximum run times.

Mean Wait
Time

(minutes)

SDSC96 I LWF 1 1 3.32

of the running and waiting applications. We simulate the FCFS, LWF,
and backfill scheduling algorithms and predict the wait time of each
application when it is submitted to the scheduler.

Table 1.3 shows the wait time prediction performance when actual or
maximum run times are used during prediction. The actual run times
are the exact running times of the applications, which are not known
ahead of time in practice. The maximum run time is the amount of
time a job requests the nodes for and is when an application should
be terminated if it hasn’t already completed. This data provides upper
and lower bounds on wait time prediction accuracy and can be used to
evaluate our prediction approach. When using actual run times, there
is no error for the FCFS algorithm because later arriving jobs do not
affect the start times of the jobs that are currently in the queue. For
the LWF and backfill scheduling algorithms, wait time prediction error
does occur because jobs that have not been enqueued can affect when
the jobs currently in the queue can run. This effect is larger for the LWF
results where later-arriving jobs that wish to perform smaller amounts of
work move to the head of the queue. When predicting wait times using
actual run times, the wait time prediction error for the LWF algorithm
is between is between 34 and 43 percent. There is a very high built-in
error when predicting queue wait times of the LWF algorithm with this
technique because there is a higher probability that applications that
have not yet been submitted will affect when already submitted appli-

14.19 7.88
SDSC96 I Backfill 1 1 0.30 39.66 11.33

10

Scheduling

Table 1.4. Wait time prediction performance of our two techniques.

Technique 1 Technique 2
Run Time Wait Time

Prediction Error Prediction Error
Workload

ANL
ANL
ANL
CTC
CTC

-
Algorithm (minutes) (minutes) (minutes)

FCFS 38.26 161.49 260.36
LWF 54.11 44.75 76.78

Backfill 46.16 75.55 130.35
FCFS 125.69 30.84 76.18
LWF 145.28 5.74 9.80

cations will start. There is also a small error (3 - 4%) when predicting
the wait times for the backfill algorithm.

The table also shows that the wait time prediction error of the LWF
algorithm when using actual run times as run time predictors is 59 to 80
percent better than the wait time prediction error when using maximum
run times as the run time predictor. For the backfill algorithm, using
maximum run times results in between 96 and 99 percent worse perfor-
mance than us ing actual r u n times. Maximum run times are provided
in the ANL and CTC workload and are implied in the SDSC workloads
because each of the queues in the two SDSC workloads have maximum
limits on resource usage.

The third column of Table 1.4 shows that our run time prediction
technique results in run time prediction errors that are from 33 to 86
percent of mean application run times and the fourth column shows that
the wait time prediction errors that are from 30 to 59 percent of mean
wait times. The results also show that using our run time predictor
result in mean wait time prediction errors that are 58 percent worse
than when using actual run times for the backfill and L W algorithms
but 74 percent better than when using maximum run times.

Improving Resource Selection and Scheduling Using Predictions 11

3.3
Our second wait time prediction technique uses historical informa-

tion on scheduler state to predict how long applications will wait until
they receive resources. This is an instance of the same categorization
prediction approach that we use to predict application run times in Sec-
tion 1.2. We selected scheduler state characteristics that describe the
parallel computer being scheduled, the application whose wait time is
being predicted, the time the prediction is being made, the applications
that are waiting in the queue ahead of the application being predicted,
and the applications that are running to use when making predictions.
The characteristics of scheduler state are continuous parameters, similar
to the number of nodes specified by an application. Therefore, a range
size is used for all of these characteristics.

The fifth column of Table 1.4 shows the performance of this wait time
prediction technique. The data shows that the wait time prediction
error is 42 percent worse on average than our first wait time prediction
technique. One trend to notice is that the predictions for the FCFS
scheduling algorithm are the most accurate for all of the workloads, the
predictions for the backfill algorithm are all the second most accurate,
and the predictions for the LWF algorithm are the least accurate. This
is the same pattern when the first wait time prediction technique is used
with actual run times. This indicates that our second technique is also
affected by not knowing what applications will be submitted in the near
future.

Predicting Queue Wait Times: Technique 2

’

4. Scheduling Using Run Time Predictions
Many scheduling algorithms use predictions of application execution

times when making scheduling decisions [3, 10, 81. Our goal in this
section is to improve the performance of the LWF and backfill scheduling
algorithms that use run time predictions to make scheduling decisions.
We measure the performance of a scheduling algorithm using utilization,
the average percent of the machine that is used by applications, and
mean wait time, the average amount of time that applications wait before
receiving resources.

Table 1.5 shows the performance of the scheduling algorithms when
the actual run times are used as run time predictors and when maxi-
mum run times are used as run time predictors. These numbers give us
upper and lower bounds on the scheduling performance we can expect.
The data shows that while maximum run times are not very accurate
predictors, this has very little effect on the utilization of the simulated

12

Actual Run Times
Mean Wait

Scheduling Utilization Time

Table 1.5. Scheduling performance using actual and maximum run times.

Maximum Run Times

Utilization Time
Mean Wait

I Workload [Algorithm 11 (percent) 1 (minutes) 11 (percent) 1 (minutes) I

parallel computers. Predicting run times with actual run times when
scheduling results in an average of 30 percent lower mean wait times.

To evaluate how. well our run time predictions can improve schedul-
ing performance, the first thing we need to determine is what template
sets to use to predict application run times. We initially tried to mini-
mize the run time prediction error for workloads generated by running
the scheduling algorithms using maximum run times as predictors and
recording all predictions that were made. We were not satisfied with
the scheduling performance obtained using the parameters obtained by
searching over these workloads. So, instead of attempting to minimize
run time prediction error, we perform scheduling simulations using dif-
ferent run time prediction parameters and attempt to directly minimize
wait times. We do not attempt to maximize utilization because utiliza-
tion only changes very slightly when different template sets are used or
even when a different scheduling algorithm is used.

Table 1.6 shows the performance of the results of these searches. As
expected, our run time prediction has minimal impact on utilization.
Using our run time predictions does decrease mean wait time by an
average of 25 percent over using maximum wait times. These mean wait
times are 5 percent more than the wait times achieved when using actual
run times.

5. Scheduling With Advance Reservations
Some applications have very large resource requirements and would

like to use resources from multiple parallel computers to execute. In this
section, we describe one solution to this co-allocation problem: Advance

Improving Resource Selection and Scheduling Using Predictions

Scheduling

13

Mean Run Time Scheduling
Prediction Utilization I Mean Wait Time

I I Workload 1 Algorithm I(Error (minutes) (1 (percent) I (minutes)

I

SDSC96 [LWF)I 112.13 I 46.79 I 7.43
SDSC96 I Backfill 1 1 47.06 I 46.79 1 10.56

reservation of resources. Reservations allow a user to request resources
from multiple scheduling systems at a specific time and thus gain simul-
taneous access to sufficient resources for their application.

We investigate several different ways to add support for reservations
into scheduling systems and evaluate their performance. We evaluate
scheduling performance using utilization and mean wait time, as in the
previous section, and also mean offset f r o m requested reservation t ime;
the average difference between when the users initially want to reserve
resources for each application and when they actually obtain reserva-
tions. The mean offset from requested reservation time measures how
well the scheduler performs at satisfying reservation requests.

In this section, we use these metrics to evaluate a variety of techniques
for combining scheduling from queues with reservation. There are sev-
eral assumptions and choices to be made when doing this. The first is
whether applications are restartable. Most scheduling systems currently
assume that applications are not restartable (a notable exception is the
Condor system described in (161 and Chapter ??). We evaluate schedul-
ing techniques when applications both can and cannot be restarted. We
assume that when an application is terminated, intermediate results are
not saved and applications must restart execution from the beginning.
We also assume that a running application that was reserved cannot be
terminated to start another application. Further, we assume that once
the scheduler agrees to a reservation time, the application will start at
that time.

If we assume that applications are not restartable and the scheduler
must fulfill it once it is made, then we must use maximum run times when
predicting application execution times to ensure that nodes are available.

. '

14

The resulting scheduling algorithms essentially perform backfilling. This
approach is discussed in Section 1.5.2

If applications are restartable, there are more options for the schedul-
ing algorithm and this allows us to improve the scheduling performance.
First, the scheduler can use run time predictions other than maximum
run times. Second, there are many different ways to select which run-
ning applications from the queue to terminate to start a reserved appli-
cation. Details of these options and their performance are presented in
Section 1.5.3

Due to space limitations, we only summarize the performance data
we collected for the techniques presented in this section. Please see [20]
for a more comprehensive presentation of performance data.

5.1 Reservation Model
In our model, a reservation request consists of the number of nodes

desired, the maximum amount of time the nodes will be used, the desired
start time, and the application to run on those resources. We assume
that the following procedure occurs when a user wishes to submit a
reservation request:

1 The user requests that an application run at time Tr on N nodes
for at most M amount of time.

2 The scheduler makes the reservation at time T, if it can. In this
case, the reservation time, T , equals the requested reservation time,
T r .

3 If the scheduler cannot make the reservation at time T,, it replies
with a list of times it could make the reservation and the user picks
the available time T which is closest in time to T,.

The last part of the model is what occurs when an application is
terminated. First, only applications that came from a queue can be
terminated. Second, when an application is terminated, it is placed
back in the queue from which it came in its correct position.

5.2 Nonrestartable Applications
In this section, we assume that applications cannot be terminated

and restarted at a later time and that once a scheduler agrees to a reser-
vation, it must be fulfilled. A scheduler with these assumptions must
not start an application from a queue unless it is sure that starting
that application will not cause a reservation to be unfulfilled. Further,
the scheduler must make sure that reserved applications do not exe-

, ' i

Improving Resource Selection and Scheduling Using Predictions 15

cute longer than expected and prevent other reserved applications from
starting. This means that only maximum run times can be used when
making scheduling decisions.

A scheduler decides when an application from a queue can be started
using an approach similar to the backfill algorithm: The scheduler cre-
ates a timeline of when it believes the nodes of the system will be used
in the future. First, the scheduler adds the currently running applica-
tions and the reserved applications to the timeline using their maximum
run times. Then, the scheduler attempts to start applications from the
queue using the timeline and the number of nodes and maximum run
time requested by the application to make sure that there are no con-
flicts for node use. If backfilling is not being performed, the timeline
is still used when starting an application from the head of the queue
to make sure that the application does not use any nodes that will be
needed by reservations.

To make a reservation, the scheduler first performs a scheduling sim-
ulation of applications currently in the system and produces a timeline
of when nodes will be used in the future. This timeline is then used to
determine when a reservation for an application can be made.

One parameter that is used when reserving resources is the relative
priorities of queued and reserved applications. For example, if queued
applications have higher priority, then an incoming reservation cannot
delay any of the applications in the queues from starting. If reserved
applications have higher priority, then an incoming reservation can de-
lay any of the applications in the queue. The parameter we use is the
percentage of queued applications can be delayed by a reservation re-
quest and this percentage of applications in the queue is simulated when
producing the timeline that defines when reservations can be made.

5.2.1 Effect of Reservations on Scheduling. We begin by
evaluating the impact on the mean wait times of queued applications
when reservations are added to our workloads. We assume the best
case for queued applications: When reservations arrive, they cannot be
scheduled so that they delay any currently queued applications.

We add reservations to our existing workloads by randomly converting
either ten or twenty percent of the applications to be reservations with
requested reservation times randomly selected between zero and two
hours in the future. We find that adding reservations increases the wait
times of queued applications in almost all cases. For all of the workloads,
queue wait times increase an average of 13 percent when 10 percent of
the applications are reservations and 62 percent when 20 percent of the
applications are reservations. Our data also shows that if we perform

16

backfilling, the mean wait times increase by only 9 percent when 10
percent of the applications are reservations and 37 percent when 20
percent of the applications are reservations. This is a little over half of
the increase in mean wait time when backfilling is not used. Further,
there is a slightly larger increase in queue wait times for the LWF queue
ordering than for the FCFS queue ordering.

5.2.2 Offset from Requested Reservations. Next, we ex-
amine the difference between the requested reservation times of the ap-
plications in our workload and the times they receive their reservations.
We again assume that reservations cannot be made at a time that would
delay the startup of any applications in the queue at the time the reser-
vation is made.

The performance is what is expected in general: The offset is larger
when there are more reservations. For 10 percent reservations, the mean
difference from requested reservation time is 211 minutes. For 20 percent
reservations, the mean difference is 278 minutes.

Our data also shows that the difference between requested reservation
times and actual reservation times is 49 percent larger when FCFS queue
ordering is used. The reason for this may be that LWF queue ordering
will execute the applications currently in the queue faster than FCFS.
Therefore, reservations can be scheduled at earlier times.

We also observe that if backfilling is used, the mean difference from
requested reservation times increases by 32 percent over when backfilling
is not used. This is at odds with the previous observation that LWF
queue ordering results in smaller offsets from requested reservation times.
Backfilling also executes the applications in the queue faster than when
there is no backfilling. Therefore, you would expect a smaller offsets from
requested reservation times. An explanation for this behavior could be
that backfilling is packing applications from the queue tightly onto the
nodes and is not leaving many gaps free to satisfy reservations before
the majority of the applications in the queue have started.

5.2.3 Effect of Application Priority. Next, we examine the
effects on mean wait time and the mean difference between reservation
time and requested reservation time when queued applications are not
given priority over all reserved applications. We accomplish this by
giving zero, fifty, or one hundred percent of queued applications priority
over a reserved application when a reservation request is being made.

As expected, if more queued applications can be delayed when a reser-
vation request arrives, then the wait times are generally longer and the
offsets are smaller. On average, for the ANL workload, decreasing the

Improving Resource Selection and Scheduling Using Predictions 17

percent of queued applications with priority from 100 to 50 percent in-
creases mean wait time by 7 percent and decreases mean offset from
requested reservation times by 39 percent. Decreasing the percent of
queued application with priority from 100 to 0 percent increases mean
wait time by 22 percent and decreases mean offset by 89 percent. These
results for the change in the offset from requested reservation time are
representative of the results from the other three workloads: as fewer
queued applications have priority, the reservations are closer to their
requested reservations.

5.3 Restartable Applications
If we assume that applications can be terminated and restarted, then

we can improve scheduling performace by using run time predictions
other than maximum run times when making scheduling decisions. We
use our categorization run time prediction technique that we described
in Section 1.2.

The main choice to be made in this approach is how to select which
running applications to terminate when CPUs are needed to satisfy a
reservation. There are many possible ways to select which running ap-
plications that came from a queue should be terminated to allow a reser-
vation to be satisfied. We choose a rather simple technique where the
scheduler orders running applications from queues in a list based on
termination cost and moves down the list stopping applications until
enough CPUs are available. Termination cost is calculated using how
much work (number of CPUs multiplied by wall clock run time) the ap-
plication has performed and how much work the application is predicted
to still perform. Our data shows that while the appropriate weights
for work performed and work to do vary from workload to workload, in
general, the amount of work performed is the more important factor.

We performed scheduling simulations with restartable applications
using the ANL workload. When we compare this performance to the
scheduling performance when applications are not restartable, we find
that the mean wait time decreases by 7 percent and the mean difference
from requested reservation time decreases by 55 percent. There is no
significant effect on utilization. This shows that there is a performance
benefit if we assume that applications are restartable, particularly in the
mean difference from requested reservation time.

6. Summary
The availability of computational grids and the variety of resources

available through computational grids introduce two problems that we

..

18

seek to address through predictions. The first problem is selecting where
to run an application in a grid. The second problem is gaining simulta-
neous access to multiple resources so that a distributed application can
be executed.

Our approaches to both of these problems are based on predictions of
the execution time of applications. We propose and evaluate two tech-
niques for predicting these execution times. Our first technique catego-
rizes applications that have executed in the past and forms a prediction
for an application using categories of similar applications. Our second
technique uses historical information and an instance-based learning ap-
proach. We find that our categorization approach is currently the most
accurate and is more accurate than the estimates provided by users or
the techniques presented by two other researchers.

We address the problem of selecting where to run an application in a
computational grid by proposing two approaches to predicting schedul-
ing queue wait times. The first technique uses run time predictions and
performs scheduling simulations. The second technique characterizes
the state of a scheduler and the application whose wait time is being
predicted and uses historical information of wait times in these similar
states to produce a wait time prediction. We find that our first tech-
nique has a lower prediction error of between 30 and 59 percent of the
mean wait times.

We address the problem of gaining simultaneous access to distributed
resources by describing several ways to modify local scheduling systems
to provide advance reservations. We find that if we cannot restart ap-
plications, we are forced to use maximum run times as predictions when
scheduling. If we can restart applications, then we can use our run time
predictions when scheduling. We find that supporting advance reserva-
tions does increase the mean wait times of applications in the scheduling
queues but this increase is smaller if we are able to restart applications.
As a side effect of this work, we find that even when there are no reser-
vations, we can improve the performance of scheduling algorithms by
using more accurate run time predictions.

Acknowledgments
We wish to thank Ian Foster and Valerie Taylor who investigated

many of the problems discussed here with the author. This work has
been supported by Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Computational and Technol-
ogy Research of the U.S. Department of Energy, the NASA Information

._

Improving Resource Selection and Scheduling Using Predictions 19

Technology program and the NASA Computing, Information and Com-
munications Technology program.

d 1 I

20

References

[l] Christopher Atkeson, Andrew Moore, and Stefan Schaal. Locally
Weighted Learning. Artificial Intelligence Review, 11, 1997., 1997.

[2] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin,
W. Smith, and S. Tuecke. A Resource Management Architecture
for Metasystems. Lecture Notes on Computer Science, 1998., 1998.

[3] D.A.Lifka. The ANL/IBM SP Scheduling System. In D.G.Feitelson
and L.Rudolph,editors,IPPS '95 Workshop: Job Scheduling Strate-
gies for Parallel Processing ,pages 295 -303.Springer -Verlag,Lecture
Notes in Computer Science LNCS 949,1995., 1995.

[4] Murthy Devarakonda and Ravishankar Iyer. Predictability of Pro-
cess Resource Usage: A Measurement-Based Study on UNIX. IEEE
Transactions on Software Engineering, 15 (12 :1579-1586, Decem-
ber 1989., 1989.

[5] Peter Dinda. Online Prediction of the Running Time of Tasks. In
Proceedings of the 10th IEEE International Symposium on High
Performance Distributed Computing, 2001 ., 2001.

[6] Allen Downey. Predicting (queue Times on Space-Sharing Parallel
Computers. In International Parallel Processing Symposium, 1997.,
1997.

[7] N. R. Draper and H. Smit. Applied Regression Analysis, 2nd Edi-
tion. John Wiley and Sons, 1981., 1981.

[8] Dror Feitelson. A Survey of Scheduling in Multiprogrammed Parallel
Systems. Technical Report RC 19790, IBM T.J. Watson Research
Center, October 1995., 1995.

[9] Dror Feitelson and Bill Nitzberg. Job Characteristics of a Produc-
tion Parallel Scientific Workload on the NASA Ames iPSC/860.
Lecture Notes on Computer Science, 949, 1995., 1995.

Utilization and Predictability in
Scheduling the IBM SP2 with Backfilling. In Procedings of 12th
International Parallel Processing Symposium and 9th Symposium
on Parallel and Distributed Processing, 1998., 1998.

[ll] I. Foster, C. Kesselman, and eds. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, Inc.,
1998., 1998.

[12] Richard Gibbons. A Historical Application Profiler for Use by Par-
allel Scheculers. Lecture Notes on Computer Science, 1297, 1997.,
1997.

[lo] Dror Feitelson and Ahuva Weil.

Improving Resource Selection and Scheduling Using Predictions 21

[13] David E. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, 1989., 1989.

[14] M. Iverson, F. Ozguner, and L. Potter. Statistical Prediction of
Task Execution Times Through Analytic Benchmarking for Schedul-
ing in a Heterogeneous Environment. In Proceedings of the
IPPS/SPDP’99 Heterogeneous Computing Workshop, 1999., 1999.

[15] N. Kapadia, J . Fortes, and C. Brodley. Predictive Application Per-
formance Modeling in a Computational Grid Environment. In Pro-
ceedings of the 8th High Performance Distributed Computing Con-
ference, 1999., 1999.

[16] M. Litzkow and M. Livny. Experience With The Condor Distributed
Batch System. In IEEE Workshop on Experimental Distributed
Sgstems, 1990., 1990.

[17] J. Schneider and A. Moore. A Locally Weighted Learning Tutorial
using Vizier I . 0. Technical Report CMU-RI-TR-00-18, Robitics
Institute, Carnegie Mellon University, Febuary 2000., 2000.

[18] Jennifer Schopf. Structural Prediction Models for High Performance
Distributed Applications. In Proceedings of the 1997 Cluster Com-
puting Conference, 1997., 1997.

[19] Jennifer Schopf and Francine Berman. Performance Prediction in
Production Environments. In 14th International Parallel Processing
Symposium and the 9th Symposium on Parallel and Distributed
Processing, 1998., 1998.

Resource Management in Metacomputing Envi-
ronments. PhD thesis,. Northwestern University, December 1999.,
1999.

[21] Warren Smith, Ian Foster, and Valerie Taylor. Predicting Applica-
tion Run Times Using Historical Information. Lecture Notes on
Computer Science, 1459, 1998., 1998.

[22] Warren Smith and Paxkson Wong. Resource Selection Using Execu-
tion and Queue Wait Time Predictions. Technical Report NAS02-
003, NASA Ames Research Center, July 2002., 2002.

[23] Valerie Taylor, Xingfu Wu, Jonathan Geisler, Xin Li, Zhiling Lan,
Mark Hereld, Ivan Judson, and Rick Stevens. Prophesy: Automat-
ing the Modeling Process. Third International Workshop on Active
Middleware Services, 2001.

[24] D. R. Wilson and T. R. Martinez. Improved Heterogeneous Distance
Functions. Journal of Artificial Intelligence Research, 6, 1997., 1997.

[25] Rich Wolski, Neil Spring, and Jim Hayes. Predicting the CPU Avail-
ability of Time-shared Unix Systems. In Proceedings of the 8th

[20] Warren Smith.

i

22

IEEE International Symposium on High Performance Distributed
Computing, 1999., 1999.

